Using Agronomic Practices to Increase the per Hectare Yield of Flax Fibre

Presented at PaperWeek International 2005
Montreal, Feb 8, 2005
by
Alvin Ulrich
Biolin Research Inc./SaskFlax
Background

- 600,000 to 800,000 ha of oilseed flax grown annually in Western Canada
- Flax straw has high levels of cellulosic fibre
- Flax fibre-related production research relatively new to Western Canada
- Want agronomic practices that increase fibre content, straw production and seed yield cost effectively
Fibre Yield

• 2 components to Fibre Yield
 – Straw Yield-more important to farmer
 • Traditional baling after combine
 – average 1.2 to 1.5 t/ha
 – range 0 to 2.5 t/ha
 • New methods may double these “salvaged” yields
 – Fibre Content-more important to processor
 – average 13 to 18%
 – range 2 to 30%
 • Important to farmer IF straw payment were based on fiber content
Fibre Content and Processing Cost

Example Showing how Fiber Content in Flax Straw Greatly Affects Profitability of Processing the Straw for Fiber

<table>
<thead>
<tr>
<th>Fiber Content of Straw</th>
<th>5%</th>
<th>15%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average payment to farmers</td>
<td>$/tonne</td>
<td><8></td>
<td><8></td>
</tr>
<tr>
<td>Average total cost for baling, hauling, Stacking, unstacking from field to factory</td>
<td>$/tonne</td>
<td><42></td>
<td><42></td>
</tr>
<tr>
<td>Cost to process 1 tonne of straw</td>
<td>$/tonne</td>
<td><25></td>
<td><25></td>
</tr>
<tr>
<td>Total cost of Straw + Processing</td>
<td>$/tonne</td>
<td><75></td>
<td><75></td>
</tr>
<tr>
<td>Straw needed to give 1 tonne of fiber</td>
<td>tonnes</td>
<td>20</td>
<td>6.7</td>
</tr>
<tr>
<td>= Cost of 1 tonne of fiber (Straw + Processing)</td>
<td>$/tonne</td>
<td><1,500></td>
<td><500></td>
</tr>
<tr>
<td>Average value of fiber fob Sask factory</td>
<td>$/tonne</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Gross Margin (before fixed costs)</td>
<td>$/tonne</td>
<td><900></td>
<td>100</td>
</tr>
</tbody>
</table>
Fibre Production

• Influenced by the interaction of several Agronomic and Non Agronomic factors
 • growing season weather
 • variety sown
 • fertility
 • seeding rate
 • seeding date
 • type of soil
 • harvest management
Geographic Location

• Results from two 2003 Saskatchewan Regional Variety Trial Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Straw Yield kg/ha</th>
<th>Fiber Content %</th>
<th>Fiber Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watrous</td>
<td>1,013</td>
<td>16.8%</td>
<td>170</td>
</tr>
<tr>
<td>Kernan</td>
<td>349</td>
<td>11.1%</td>
<td>38</td>
</tr>
</tbody>
</table>
Agronomic Factors….

• Seeding Date and Fibre Yield
 – not conclusive but, in general, late seeding tends to increase fibre content and straw yield
 – BUT tends to decrease seed yield
Agronomic Factors

THE EFFECT OF SEEDING DATE ON FIBRE CONTENT, STRAW YIELD AND FIBRE YIELD

<table>
<thead>
<tr>
<th>Site, Year</th>
<th>Seeding Date</th>
<th>Fibre Content %</th>
<th>Straw Yield kg</th>
<th>Fibre Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mel-01</td>
<td>Early</td>
<td>12.8</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>14.9</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Mor-01</td>
<td>Early</td>
<td>17</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>12.7</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IH-01</td>
<td>Early</td>
<td>8.3</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>10.8</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Can-03</td>
<td>Early</td>
<td>15.7</td>
<td>2,120</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>18.2</td>
<td>2,780</td>
<td>519</td>
</tr>
<tr>
<td>IH-03</td>
<td>Early</td>
<td>13.6</td>
<td>680</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>14.8</td>
<td>960</td>
<td>142</td>
</tr>
<tr>
<td>Red-03</td>
<td>Early</td>
<td>15.8</td>
<td>1,030</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Late</td>
<td>17.4</td>
<td>1,550</td>
<td>214</td>
</tr>
</tbody>
</table>

Notes:
- n/a = not available
- Mel-01 = Melfort, SK 2001
- Mor-01 = Morden, MB 2001
- IH-01 = Indian Head, SK 2001
- Can-03 = Canora, SK 2003
- IH-03 = Indian Head, SK 2003
- Red-03 = Redvers, SK 2003
Agronomic Factors

- Possible reasons why late seeding tends to give more fiber, but less seed
 - plant “bolts” in early July when temperatures are higher, resulting in taller stems
 - blooms in late July when more heat stress and lower pollination rate (less seeds to fill)
 - fiber “filling” in late Aug when plants less stressed
 - Photo-period effects ??
Agronomic Factors

• Seeding Method
 – Goals = 1) high fiber yield/ha; 2) consistent small stem sizes, 3) fast retting
 – Seed Bed Utilization (low to high)
 • Disc < Hoes < Sweeps
 – Impact on straw yield dependent upon seeding rates (i.e., wider seed spread pattern more important with heavier seeding rates)
Agronomic Factors

- Seeding Method
 - No noticeable impact on fibre content (dry years?)
 - but generally higher straw yield, higher per ha fiber yield and more consistent stem sizes with wider seed spread pattern
 - Consistent seeding depth very important for high plant counts/m2 and for consistent stem diameters
THE EFFECT OF SEEDING METHOD ON FIBRE CONTENT, SALVAGED STRAW YIELD AND FIBRE YIELD (2003 - dry year)

<table>
<thead>
<tr>
<th>Seeding Method</th>
<th>Fibre Content %</th>
<th>Salvaged Straw Yield kg/ha</th>
<th>Salvaged Fibre Yield kg/ha</th>
<th>Stem Diam. mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep</td>
<td>17.3</td>
<td>998</td>
<td>310</td>
<td>1.36</td>
</tr>
<tr>
<td>Hoe</td>
<td>17.2</td>
<td>864</td>
<td>276</td>
<td>1.49</td>
</tr>
</tbody>
</table>
Agronomic Factors

- **Seeding Rate**
 - Results from 2003

<table>
<thead>
<tr>
<th>Seeding Rate (kg/ha)</th>
<th>Fibre Content (%)</th>
<th>Salvaged Straw Yield (kg/ha)</th>
<th>Fibre Yield (kg/ha)</th>
<th>Stem Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>17.2</td>
<td>1,581</td>
<td>286</td>
<td>1.50</td>
</tr>
<tr>
<td>80</td>
<td>17.3</td>
<td>1,740</td>
<td>319</td>
<td>1.32</td>
</tr>
<tr>
<td>120</td>
<td>17.2</td>
<td>1,724</td>
<td>316</td>
<td>1.24</td>
</tr>
</tbody>
</table>
….Agronomic Factors

• Interaction of Seeding Rate and Seeding Method

![Graph showing straw yield vs. seeding rate with curves for high and low seedbed utilization]
Variety Selection....

• Not all varieties have the same fibre content
 – at Canora, SK 2003
 – Linola 1084 19.2%
 – AC MacBeth 13.8%

• Not all varieties have the same straw yield
 – at Canora, SK 2003
 – Linola 1084 1142kg/ha
 – AC MacBeth 742kg/ha
....Variety Selection....

- Hence not all Varieties have the same fibre yield/ha
 - Canora 2003
 - Linola 1084 219kg/ha
 - AC MacBeth 102kg/ha
Variety Selection

• Fibre Flax Varieties
 – Fibre Contents
 • Average 20-30%
 • Range 13%-40%
 – Straw Yields
 • Average 4.2-5.6 t/ha
 • Range 1.5-10t/ha
 – Depends upon variety and year
Combined Effects of Agronomic Practices: An Example

- Canora 2003

<table>
<thead>
<tr>
<th>Variety</th>
<th>Seeding Rate kg/ha</th>
<th>Seeding Method</th>
<th>Seeding Date</th>
<th>Fiber Content %</th>
<th>Straw Yield kg/ha</th>
<th>Fiber Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taurus</td>
<td>40</td>
<td>Hoe</td>
<td>Early</td>
<td>14.2</td>
<td>1859</td>
<td>264</td>
</tr>
<tr>
<td>Flanders</td>
<td>80</td>
<td>Sweep</td>
<td>Late</td>
<td>21.5</td>
<td>3055</td>
<td>657</td>
</tr>
</tbody>
</table>

- If fibre is worth $50-.80/kg then extra 393 kg of fibre *after processing* is $197 -314/ha
Summary....

- Agronomy has significant influence on fibre content, straw yield and fibre yield
- Most agronomic practices that increase fibre yield are not expensive to implement
…..Summary

• More agronomic research (fertilizer, seeding dates, seeding rates etc.) is needed to prepare a management regime that maximizes profits for flax as a dual purpose crop
Flax - Stop the Burning!
Start the Earning!

Contact Alvin Ulrich or Richard Marleau
Biolin Research Inc.
161 Jessop Avenue
Saskatoon, SK.
S7N 1S4
306.668.0130 phone
306.668.0131 fax
aulrich@biolin.sk.ca
rmarleau@biolin.sk.ca